a2zpapers.com

> Exam. Code : 103202
> Subject Code : 1027

B.A./B.Sc. Semester-II
 MATHEMATICS

Paper-I
(Calculus and Differential Equations)

Time Allowed-3 Hours] [Maximum Marks-50
Note :- Attempt FIVE questions in all, selecting at least TWO questions from each Section.

SECTION-A

I. (a) Show that the asymptotes of the curve :
$\mathrm{x}^{3}-\mathrm{xy}^{2}-2 \mathrm{xy}+2 \mathrm{x}-\mathrm{y}-1=0$
cut the curve in at most three points which lie on line $3 x-y-1=0$.
(b) Show that the abscissa of the point of inflexion on the curve :
$x=a-b \cos \theta, y=a \theta-b \sin \theta$ is $\frac{a^{2}-b^{2}}{a} \cdot 5,5$
II. (a) Show that at the point $(1,-1)$, there is a cusp on the curve :
$x^{3}+x y^{2}+y^{3}-4 x^{2}+y^{2}+4 x+y-1=0$.
2539(2517)/STB-13924
1
(Contd.)
a2zpapers.com
(b) Prove that for the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, P=\frac{C D^{3}}{a b}$, where $C D$ is the semi conjugate diameter to $C P$.
III. (a) Trace the curve $y^{2}(a+x)=x^{2}(3 a-x), a>0$.
(b) Evaluate $\int \frac{\sinh x+\cosh x}{\sinh ^{3} x-\cosh ^{3} x} d x$.
IV. (a) If $\mathrm{U}_{\mathrm{n}}=\int_{0}^{\frac{\pi}{4}} \tan ^{\mathrm{n}} \mathrm{dx}, \mathrm{n}>1$ show that
$U_{n}+U_{n-2}=\frac{1}{n-1} ;$ deduce the value of U_{5}.
(b) Show that $\int_{0}^{\pi / 2} \sin ^{2 m} \theta \cos ^{2 m-1} \theta d \theta$
$=\frac{(2 m-2)(2 m-4)--4.2}{(4 m-1)(4 m-3)--(2 m+1)}, m$ being a positive interger >1.
V. (a) Prove that $\int_{0}^{\pi} \frac{x d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}=\frac{\pi^{2}}{2 a b}$.
(b) Find the length of the arc of the parabola $x^{2}=4$ ay extending from the vertex to one extremity of the latus-rectum.

5,5

SECTION-B

VI. (a) Find the necessary and sufficient condition that the equation :
$\mathrm{Mdx}+\mathrm{Ndy}=0$ may be exact.
(b) Solve : $x y p^{2}+p\left(3 x^{2}-2 y^{2}\right)-6 x y=0$.
VII. (a) Solye and examine for singular solution of the differential equation : $x^{2}(y-p x)=y p^{2}$.
(b) Find the orthogonal trajectory of the series of parabolas whose equation is $y^{2}=4 a x$.

5,5
VIII.(a) Solve : $(2 x-1)^{3} \frac{d^{3} y}{d x^{3}}+(2 x-1) \frac{d y}{d x}-2 y=x$
(b) Solve $\left(D^{2}+a^{2}\right) y=\sec a x$, by method of variation of parameters.

5,5
IX. (a) Solve in series:

$$
\left(x-x^{2}\right) \frac{d^{2} y}{d x^{2}}+(1-5 x) \frac{d y}{d x}-4 y=0
$$

(b) Solve in series :

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-1\right) y=0
$$

X. (a) Solve in series Legendre's Differential Equation.
(b) Solve : $\left(x^{3} D^{3}+3 x^{2} D^{2}+x D+1\right) y=x \log x$

